FANDOM


This article or section is incomplete and requires further information.
You can edit this page to improve it.

ShapesEdit

CirclesEdit

$ Area = \pi r^2 $

$ Circumference = 2 $π$ r $

$ r = 2/d $ or $ d = 2r $
where r = radius, d = diameter, and π = \pi (3.14..).

SquaresEdit

$ Area = l^2 $

$ Area = \frac{d^2}{2} $

Where $ l $ is the length of a side, and $ d $ is the diagonal.

RhombusEdit

$ Area = \frac{1}{2} \cdot d $$ 1 $$ d $$ 2 $

Where d are the diagonals of the rhombus.

RectanglesEdit

$ Area = lw $

$ Perimeter = 2(l + w) $

Where $ l $ is the length of a side, and $ w $ is the width of a side.

TrianglesEdit

Note* All angles of a triangle always add to 180, meaning solving for an angle can be done by: $ a + b + c - 180 $ where $ a $,$ b $, and $ c $ are angles of the triangle.

Trigonometric RatiosEdit

$ sin( $°$ ) = \frac{opp}{hyp} $

$ cos( $°$ ) = \frac{adj}{hyp} $

$ tan( $°$ ) = \frac{opp}{adj} $

Area / OtherEdit

$ Area = \frac{1}{2}bh $ Where $ b $ is the base, and $ h $ is the height of the triangle.

The following formulas are only true for right angle triangles:

$ A^2 + B^2 = C^2 $ Where each letter indicates a different side length

The following formula is only true for a equilateral triangle:

$ Area = \frac{s^2}{\sqrt 3\cdot4} $


$ a + b < c $

Sin LawEdit

For any you may use sin law, or cos law.

$ \frac{a}{sin(A)} = \frac{b}{sin(B)} = \frac{c}{sin(C)} $

or

$ \frac{sin(A)}{a} = \frac{sin(B)}{b} = \frac{sin(C)}{c} $

Cos LawEdit

$ a^2 = b^2 + c^2 - 2bccost(A) $

or

$ cos(A) = \frac{b^2 + c^2 - a^2}{2bc} $

OtherEdit

Quadratic FormulaEdit

$ ax^2 + bx + c = 0 $

If this is not true, you may follow the formula:$ x = -b $±$ \sqrt \frac{b^2 - 4ac}{2a} $

CombinationsEdit

a Combination is used when the 'order' of a

Combinations are defined by nCr
$ nCr = \frac{n!}{r!(n-r)!} $

PermutationsEdit

A Permutation is an arrangement of a set. Used when the order of the set matters.

Permutations are defined by nPr.

Formula: $ nPr = \frac{n!}{(n-r)!} $